synthetical$81239$ - translation to ολλανδικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

synthetical$81239$ - translation to ολλανδικά

STUDY OF GEOMETRY WITHOUT THE USE OF COORDINATES OR FORMULAS.
Synthetical geometry; Computational synthetic geometry; Pure geometry; Synthetic proof

synthetical      
adj. synthetisch

Βικιπαίδεια

Synthetic geometry

Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulate, and presently called axioms.

The term "synthetic geometry" has been coined only after the 17th century, and the introduction by René Descartes of the coordinate method, which was called analytic geometry. So the term "synthetic geometry" was introduced to refer to the older methods that were, before Descartes, the only known ones.

According to Felix Klein

Synthetic geometry is that which studies figures as such, without recourse to formulae, whereas analytic geometry consistently makes use of such formulae as can be written down after the adoption of an appropriate system of coordinates.

The first systematic approach for synthetic geometry is Euclid's Elements. However, it appeared at the end of the 19th that Euclid's postulates were not sufficient for characterizing geometry. The first complete axiom system for geometry was given only at the end of the 19th century by David Hilbert. At the same time, it appeared that both synthetic methods and analytic methods can be used to built geometry. The fact that the two approches are equivalent has been proved by Emil Artin in his book Geometric Algebra.

Because of this equivalence, the distinction between synthetic and analytic geometry is no more in use, except at elementary level, or for geometries that are not related to any sort of numbers, such as some finite geometries and non-Desarguesian geometry.